

Documentation for UNICEF Mobility Pipeline

[image: _images/mobility_pipeline.svg]
 [https://travis-ci.com/codethechange/mobility_pipeline][image: _images/badge.svg]
 [https://codecov.io/gh/codethechange/mobility_pipeline][image: Documentation Status]
 [https://unicef-mobility-pipeline.readthedocs.io/en/latest/?badge=latest]
Contents:

	Getting Started
	Getting the Code and Dependencies

	Contributing
	Your First Contribution

	Guidelines

	User Manual
	Setup

	Running the Program

	Running Utilities

	Developer Manual
	Technical Concepts

	Code Layout and Organization

	General Computation Process

	Code Documentation
	mobility_pipeline package

To get started, see our getting started guide.
If you would like to contribute, see our
contributing guide.

This project is hosted on GitHub at
https://github.com/codethechange/mobility_pipeline

Project Overview

mobility_pipeline uses the relative geographical positions of cell towers and
administrative regions (e.g. provinces) to transform mobility data describing
how people move between cell towers into data on how people move between
administrative regions. This lets us turn cell tower movement data that
telecommunications providers already have into data on migration patters between
political regions, which is what governments and NGOs need to plan disaster
relief efforts.

Legal

This project was created by
Stanford Code the Change [http://codethechange.stanford.edu] for UNICEF.
It is available under the license in
LICENSE.txt [https://github.com/codethechange/mobility_pipeline/blob/master/LICENSE.txt]

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Our code is hosted here: https://github.com/codethechange/mobility_pipeline

Getting the Code and Dependencies

	Choose where you want to download the code, and navigate to that directory.
Then download the code.

$ cd path/to/desired/directory
$ git clone https://github.com/codethechange/mobility_pipeline.git

	Install python 3 from https://python.org or via your favorite package manager

	Install dependencies into a virtual environment

$ cd name_of_cloned_repository
$ python3 -m venv venv
$ source venv/bin/activate
$ pip install -r requirements.txt

Now you’re all set!

Contributing

Your First Contribution

	Create a fork of this repository on GitHub [https://www.github.com] under
your own account.

	Follow the getting started guide, substituting
references to the main repository for your fork.

	Create a new branch

$ git checkout -b my-new-branch

	Make some awesome commits

$ # Make some changes
$ git commit

	Make sure all tests pass

$./test.sh
$ # All tests should pass, and pylint and mypy should raise no complaints

	Merge in any changes from the main repository that might have occurred since
you made the fork. Fix any merge conflicts

$ git checkout master
$ git pull upstream master
$ git checkout my-new-branch
$ git merge master

	Push the branch:

$ git push -u origin my-new-branch

	Submit a pull request on GitHub [https://www.github.com]

	Thanks for your contribution! One of the maintainers will get back to you
soon with any suggested changes or feedback.

Guidelines

Any code contributions should follow the following guidelines.

Code Style

Python code should conform to the
PEP8 [https://www.python.org/dev/peps/pep-0008/] style guidelines.

Docstrings should conform to the
Google Style [https://github.com/google/styleguide/blob/gh-pages/pyguide.md#38-comments-and-docstrings].
For example (copied from
Google’s Style Guide [https://github.com/google/styleguide]):

def fetch_bigtable_rows(big_table, keys, other_silly_variable=None):
 """Fetches rows from a Bigtable.

 Retrieves rows pertaining to the given keys from the Table instance
 represented by big_table. Silly things may happen if
 other_silly_variable is not None.

 Args:
 big_table: An open Bigtable Table instance.
 keys: A sequence of strings representing the key of each table row
 to fetch.
 other_silly_variable: Another optional variable, that has a much
 longer name than the other args, and which does nothing.

 Returns:
 A dict mapping keys to the corresponding table row data
 fetched. Each row is represented as a tuple of strings. For
 example:

 {'Serak': ('Rigel VII', 'Preparer'),
 'Zim': ('Irk', 'Invader'),
 'Lrrr': ('Omicron Persei 8', 'Emperor')}

 If a key from the keys argument is missing from the dictionary,
 then that row was not found in the table.

 Raises:
 IOError: An error occurred accessing the bigtable.Table object.
 """

Testing

To run all tests, execute test.sh. All tests should pass on your submission.

Travis CI

These tests are checked are run by
Travis CI [https://travis-ci.com] on all pull requests and the master branch.
Before each commit, run test.sh and ensure that all tests pass. All tests
should pass on each commit to make reverting easy.

Unit Testing

Unit testing is performed using pytest [https://pytest.org/]. To run these
tests, execute python -m pytest from the repository root.

Code and Style Analysis

PEP8 are checked by pylint.
pylint also performs static code analysis to catch some programming errors.
This analysis is intended to be a fall-back defense, as unit testing should be
thorough.

Type Checking

All code should use type hints wherever type cannot be inferred. At a minimum,
all function prototypes should have type hints for the return value and each
parameter. Type hinting is performed in the code itself, not in docstrings.
Static type analysis is performed by mypy

Code Coverage

When running the test suite using test.sh, code coverage is computed by
pytest-cov [https://pytest-cov.readthedocs.io/en/latest/] when running
pytest and output after test results. Use these results to ensure that all
tests are being covered. If the total coverage is not 100%, run
coverage report -m to see which lines were not tested. Incomplete coverage
may be acceptable if the untested lines should not have been tested (e.g. code
stubs for un-implemented functions).

Coverage is tracked by Codecov [https://codecov.io].

Using mobility_pipeline

Setup

Getting Shapefiles

Download the shapefile (.shp) from
GADM [https://gadm.org/download_country_v3.html]
(Database of Global Administrative Areas). After unpacking the zip file, be sure
to choose the .shp file that corresponds to the level of admin you want
(e.g. states versus counties in the United States).

Next, conver the .shp file into a GeoJSON format via the command line tool
ogr2ogr, available by installing
GDAL [https://www.gdal.org/]. Then, do the conversion with this command:

ogr2ogr -f GeoJSON -t_srs crs:84 [name].geojson [name].shp

replacing [name] to match your .shp file.

Configuration

Regardless of what you want to use mobility_pipeline for, you will need to
tell it how to find your data. You can do so by adjusting the constants
in mobility_pipeline.data_interface. These constants are:

	mobility_pipeline.data_interface.DATA_PATH: The path to the folder
holding your data.

	mobility_pipeline.data_interface.TOWERS_PATH: This is a CSV file
containing the coordinates of
each cell tower.

	mobility_pipeline.data_interface.VORONOI_PATH: This is a JSON file
that describes the cells of a
Voronoi Tessellation [https://en.wikipedia.org/wiki/Voronoi_diagram] whose
seeds are the cell towers.

	mobility_pipeline.data_interface.MOBILITY_PATH: This is a CSV file
holding the mobility data.

	mobility_pipeline.data_interface.TOWER_PREFIX: This is a string
that prefixes tower indices in the
tower name. For example, Brazil towers might be named br0, br1, etc.
with br being the prefix.

For details on the required formats of these files, see the documentation for
data_interface.

Running the Program

There are 2 scripts:

	gen_country_matrices.py: run once for each admin level / country you want
data for. It will generate the admin-to-tower and tower-to-admin matrices.

	gen_day_mobility.py: run for each day’s worth of data. It will compute
the admin-to-admin mobility data.

For both scripts, run with --help for more usage information. Both scripts
also run independently of the path constants in data_interface.py. Instead,
they accept command-line arguments that define their operation.

Running Utilities

This program also comes with utilities. These utilities use the constants in
data_interface.py for the most part.

Plot Voronoi

To get a sense for what the Voronoi tessellation looks like, you can plot it by
running plot_voronoi.py. This will display a plot of all the Voronoi
cells with the tower positions overlayed. For details, see the documentation
for mobility_pipeline.plot_voronoi.

Visualize Overlaps

To see what the overlaps look like, you can see a plot of the shapefile with
one Voronoi cell and the admin regions it might overlap with color-coded. The
script also prints out the values that would go in the tower-to-admin matrix so
you can see what the numbers represent visually. To see the plot, run
visualize_overlaps.py. For details, see
mobility_pipeline.visualize_overlaps.

Validate Data File Formats

You can run some checks to provide some assurance that a set of data files are
formatted as the program expects. After configuring the data paths as described
above, you can run these checks by executing check_validation.py. You can
also look at the code in this file to see what format the program expects. For
details, see mobility_pipeline.check_validation.

Developer Manual

Technical Concepts

Matrices

We store program data internally as numpy matrices wherever possible so that
we can take advantage of numpy’s optimizations. These are the main matrices
the data goes through:

	Tower-to-tower matrix: The raw mobility data between towers

	Tower-to-admin matrix: Stores the fraction of each administrative region
that is within the range of each tower (covered by each tower’s Voronoi
cell).

	Admin-to-tower matrix: Stores the fraction of each tower’s range (Voronoi
cell) that is within each administrative region.

	Admin-to-admin matrix: The end product, which describes mobility between
administrative regions.

For details, see mobility_pipeline.lib.make_matrix.

Code Layout and Organization

Utilities

The python files outside of lib are executable script files meant to be run
from the terminal. While they may have functions, those functions are not
meant to be imported into other programs.

Library

The files within lib form a library of functions that are format-agnostic
and designed to be repurposed in other programs. They are covered by unit tests
and are used by the utilities. They are broadly divided into the following
files:

	mobility_pipeline.lib.make_matrix: Functions for making and working
with the matrices.

	mobility_pipeline.lib.overlap: Functions for working with polygon
overlaps in general.

	mobility_pipeline.lib.validate: Functions for validating data
formats.

	mobility_pipeline.lib.voronoi: Functions for working with Voronoi
tessellations.

General Computation Process

We get the tower-to-tower matrix from the mobility data. Then, we use the
country shapefile and Voronoi tessellation to compute the tower-to-admin and
admin-to-tower matrices. Finally, we compute the admin-to-admin matrix
by multiplying the other three matrices like this:
(tower-to-admin) * (tower-to-tower) * (admin-to-tower)

mobility_pipeline

	mobility_pipeline package
	Subpackages
	mobility_pipeline.lib package
	Submodules

	mobility_pipeline.lib.make_matrix module

	mobility_pipeline.lib.overlap module

	mobility_pipeline.lib.validate module

	mobility_pipeline.lib.voronoi module

	Module contents

	Submodules

	mobility_pipeline.check_validation module

	mobility_pipeline.data_interface module

	mobility_pipeline.gen_country_matrices module

	mobility_pipeline.gen_day_mobility module

	mobility_pipeline.plot_voronoi module

	mobility_pipeline.visualize_overlaps module

	Module contents

mobility_pipeline package

Subpackages

	mobility_pipeline.lib package
	Submodules

	mobility_pipeline.lib.make_matrix module

	mobility_pipeline.lib.overlap module

	mobility_pipeline.lib.validate module

	mobility_pipeline.lib.voronoi module

	Module contents

Submodules

mobility_pipeline.check_validation module

Script that checks the validity of data files

	
mobility_pipeline.check_validation.validate_data_files() → bool

	Check the validity of data files

Note that these checks are computationally intensive, so they probably
should not be included in an automated pipeline. Rather, they are for manual
use.

Data files validated:

	Towers file at mobility_pipeline.data_interface.TOWERS_PATH

	Voronoi file at mobility_pipeline.data_interface.VORONOI_PATH

	Mobility file at
mobility_pipeline.data_interface.MOBILITY_PATH

	Returns

	True if all files are valid, False otherwise.

mobility_pipeline.data_interface module

Stores the constants and functions to interface with data files

This file is specific to the data files we are using and their format.

	
mobility_pipeline.data_interface.ADMIN_ADMIN_TEMPLATE = 'data/brazil-towers-voronoi-mobility//%s-%s-admin-to-admin.csv'

	Path to admin-to-admin matrix, accepts substitutions of country_id, day_id

	
mobility_pipeline.data_interface.ADMIN_GEOJSON_TEMPLATE = 'data/brazil-towers-voronoi-mobility//%s-shape.json'

	Path to admin GeoJSON file, accepts substitution of country_id

	
mobility_pipeline.data_interface.ADMIN_SHAPE_PATH = 'data/brazil-towers-voronoi-mobility/gadm36_BRA_2'

	Relative to py:const:DATA_PATH, path to administrative region shape file

	
mobility_pipeline.data_interface.ADMIN_TOWER_TEMPLATE = 'data/brazil-towers-voronoi-mobility//%s-admin-to-tower.csv'

	Template that uses country identifier to make path to admin_tower matrix

	
mobility_pipeline.data_interface.COUNTRY_ID = 'br'

	Country identifier

	
mobility_pipeline.data_interface.DATA_PATH = 'data/brazil-towers-voronoi-mobility/'

	Path to folder containing towers, voronoi, and mobility data

	
mobility_pipeline.data_interface.MOBILITY_PATH = 'data/brazil-towers-voronoi-mobility/mobility_matrix_20150201.csv'

	Relative to DATA_PATH, path to mobility CSV file

	
mobility_pipeline.data_interface.TOWERS_PATH = 'data/brazil-towers-voronoi-mobility/towers_br.csv'

	Relative to DATA_PATH, path to towers CSV file

	
mobility_pipeline.data_interface.TOWER_ADMIN_TEMPLATE = 'data/brazil-towers-voronoi-mobility//%s-tower-to-admin.csv'

	Template that uses country identifier to make path to tower_admin matrix

	
mobility_pipeline.data_interface.TOWER_PREFIX = 'br'

	The tower name is the tower index appended to this string

	
mobility_pipeline.data_interface.VORONOI_PATH = 'data/brazil-towers-voronoi-mobility/brazil-voronoi.json'

	Relative to DATA_PATH, path to Voronoi JSON file

	
mobility_pipeline.data_interface.convert_shape_to_json(shapefile_path_prefix: str, country_id: str) → None

	Converts shapefile containing administrative regions to GeoJSON format

The GeoJSON file is saved at ADMIN_GEOJSON_TEMPLATE % country_id

	Parameters

	
	shapefile_path_prefix – Path to the .shp or .dbf shapefile, optionally
without the file extension. Both the .shp and .dbf files must be
present in the same directory and with the same name (except file
extension).

	country_id – Unique identifier for the country and admin level.

	Returns

	None

	
mobility_pipeline.data_interface.deserialize_mat(mat_path: str) → numpy.ndarray

	Deserialize a matrix from a file

File must have been created by serialize_mat().

	Parameters

	mat_path – Path of matrix file

	Returns

	Deserialized matrix

	
mobility_pipeline.data_interface.load_admin_cells(identifier: str) → List[shapely.geometry.multipolygon.MultiPolygon]

	Loads the administrative region cells

Data is loaded from ADMIN_GEOJSON_TEMPLATE % identifier.
This is a wrapper function for load_polygons_from_json().

	Returns

	A list of the administrative region cells.

	
mobility_pipeline.data_interface.load_admin_tower(country_id: str) → numpy.ndarray

	Load admin-to-tower matrix

Data loaded from ADMIN_TOWER_TEMPLATE % country_id.

	Parameters

	country_id – Country identifier

	Returns

	The admin-to-tower matrix

	
mobility_pipeline.data_interface.load_mobility(mobility_path: str) → pandas.core.frame.DataFrame

	Loads mobility data from the file at mobility_path.

	Returns

	A pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] with columns ORIGIN, DESTINATION,
and COUNT. Columns ORIGIN and DESTINATION contain numeric
portions of tower names, represented as numpy.int. These
numeric portions strictly increase in ORIGIN-major order, but rows
may be missing if they would have had a COUNT value of 0.

	
mobility_pipeline.data_interface.load_polygons_from_json(filepath) → List[shapely.geometry.multipolygon.MultiPolygon]

	Loads cells from given filepath to JSON.

	Returns

	A list of shapely.geometry.MultiPolygon objects, each of which
describes a cell. If the cell can be described as a single polygon, the
returned MultiPolygon will contain only 1 polygon.

	
mobility_pipeline.data_interface.load_tower_admin(country_id: str) → numpy.ndarray

	Load tower-to-admin matrix

Data loaded from TOWER_ADMIN_TEMPLATE % country_id.

	Parameters

	country_id – Country identifier

	Returns

	The tower-to-admin matrix

	
mobility_pipeline.data_interface.load_towers(towers_path: str) → numpy.ndarray

	Loads the tower positions from a file

	Parameters

	towers_path – Path to towers file

	Returns

	A matrix of tower coordinates with columns [longitude, latitude] and
one tower per row. Row indices match the numeric portions of tower
names.

	
mobility_pipeline.data_interface.load_voronoi_cells(voronoi_path: str) → List[shapely.geometry.multipolygon.MultiPolygon]

	Loads cells

	Parameters

	voronoi_path – Path to file to load cells from

	Returns

	See load_polygons_from_json. Each returned object represents
a Voronoi cell.

	
mobility_pipeline.data_interface.save_admin_admin(country_id: str, day_id: str, admin_admin: numpy.ndarray) → str

	Save admin-to-admin matrix

Saved to ADMIN_ADMIN_TEMPLATE % (country_id, day_id).

	Parameters

	
	country_id – Country identifier

	day_id – Day identifier

	admin_admin – Admin-to-admin matrix to save

	Returns

	Path at which matrix was saved

	
mobility_pipeline.data_interface.save_admin_tower(country_id: str, mat: numpy.ndarray) → None

	Save admin-to-tower matrix

Saved to ADMIN_TOWER_TEMPLATE % country_id.

	Parameters

	
	country_id – Country identifier

	mat – Matrix to save

	Returns

	None

	
mobility_pipeline.data_interface.save_tower_admin(country_id: str, mat: numpy.ndarray) → None

	Save tower-to-admin matrix

Saved to TOWER_ADMIN_TEMPLATE % country_id.

	Parameters

	
	country_id – Country identifier

	mat – Matrix to save

	Returns

	None

	
mobility_pipeline.data_interface.serialize_mat(mat: numpy.ndarray, mat_path: str) → None

	Save a matrix to a file

Matrix is saved such that it can be recovered by deserialize_mat().

	Parameters

	
	mat – Matrix to save

	mat_path – File to save matrix to

	Returns

	None

mobility_pipeline.gen_country_matrices module

Generate admin-to-tower and tower-to-admin matries for a country

	
mobility_pipeline.gen_country_matrices.main()

	Main function called when script run

mobility_pipeline.gen_day_mobility module

Generate admin-to-admin mobility matrix for a single day

	
mobility_pipeline.gen_day_mobility.main()

	Called when script run

mobility_pipeline.plot_voronoi module

Tool for plotting the Voronoi tessellation described by the provided data

Note that the seeds of the tessellation are based on the provided towers file,
not computed from the cells. The tool also prints to the console the number
of towers and number of cells. Towers without an associated cell are shown in
green, while other towers are shown in red.

	
mobility_pipeline.plot_voronoi.plot_polygon(axes: matplotlib.pyplot.axes, polygon: shapely.geometry.multipolygon.MultiPolygon) → None

	Add a polygon to an axes

	Parameters

	
	axes – The axes to add the polygon to

	polygon – The polygon to add

	Returns

	None

mobility_pipeline.visualize_overlaps module

Plots one Voronoi cell on top of all the administrative regions. The admins
that intersect the Voronoi cell are colored by index and have the associated
values from the tower-to-admin matrix printed. This lets you check that the
matrix values seem reasonable.

	
mobility_pipeline.visualize_overlaps.I_TOWER_TO_COLOR = 1

	Index of Voronoi cell to show.

	
mobility_pipeline.visualize_overlaps.main()

	Main function that generates the plot

	
mobility_pipeline.visualize_overlaps.plot_polygon(axes: matplotlib.pyplot.axes, polygon: shapely.geometry.multipolygon.MultiPolygon, color, _label='') → None

	Plot a polygon (or multipolygon) with matplotlib

	Parameters

	
	axes – The matplotlib axes to plot on

	polygon – The polygon to plot

	color – Color to use for shading the polygon

	_label – Label for the polygon that will be displayed in the legend

	Returns

	None

Module contents

mobility_pipeline.lib package

Submodules

mobility_pipeline.lib.make_matrix module

Functions for making tower-tower, tower-admin, and admin-tower matrices

Matrices:

	tower-tower: The raw mobility data between cell towers. The value at row i
and column j is the number of people who move on that day from the
region served by tower i to the region served by tower j. Note that
really, this is the number of cell phones that connect to tower i in the
morning and tower j in the evening, which we assume represents a person
moving. This matrix has row indices of the origin towers and column indices
of the destination towers.

	tower-admin: Computed from the Voronoi tessellation and the country shapefile,
this matrix represents the percent of each admin that is covered by each
tower. For any x in the matrix at row i and column j, we know
that a fraction x of the admin with index i is covered by the tower
with index j. This means that the matrix has row indices of admin
indices and column indices of tower indices.

	admin-tower: Computed from the Voronoi tessellation and the country shapefile,
this matrix represents the percent of each tower’s range that is within each
admin. For any x in the matrix at row i and column j, we know
that a fraction x of the Voronoi cell for the tower with index i is
within the admin
with index j. This means that the matrix has row indices of tower
indices and column indices of admin indices.

	admin-admin: This is the final mobility matrix, which represents the number
of people who move between admins each day. The value at row i and
column j is the number of people who move on that day from the admin
with index i to the admin with index j. This is, of course, being
estimated from cell phone data and the overlaps as computed in the other
matrices.

This strategy is explained by Mike Fabrikant at UNICEF:
https://medium.com/@mikefabrikant/cell-towers-chiefdoms-and-anonymized-call-detail-records-a-guide-to-creating-a-mobility-matrix-d2d5c1bafb68

	
mobility_pipeline.lib.make_matrix.generate_rtree(polygons: collections.abc.Sequence) → Tuple[shapely.strtree.STRtree, Dict[Tuple[tuple, ...], int]]

	Helper function that builds an RTree from MultiPolygons

The Rtree is built from MultiPolygons using
shapely.strtree.STRtree. Since the RTree returns the overlapping
MultiPolygons, we need a way to retrieve the polygon’s index. We do this
with a dictionary from the exterior coordinates (Polygon.exterior.coords)
of every Polygon in the MultiPolygon to the MultiPolygon’s index in the
provided Sequence.

Specifically, you can generate the key for a given MultiPolygon mpoly
like so:

key = tuple([tuple(p.exterior.coords) for p in mpoly])

	Parameters

	polygons – A Sequence of MultiPolygons. Must be iterable and able to be
passed to the STRtree constructor. Iteration must be
deterministic.

	Returns

	A tuple of the RTree and the index mapping dictionary.

	
mobility_pipeline.lib.make_matrix.make_a_to_b_matrix(a_cells: List[shapely.geometry.multipolygon.MultiPolygon], b_cells: List[shapely.geometry.multipolygon.MultiPolygon]) → numpy.ndarray

	Create an overlap matrix from sequence A to B

Computes for every pair of MultiPolygons between A and B, the fraction of
the MultiPolygon in B that is covered by the one in A. We use an RTree to
reduce the number of overlaps we have to compute by only computing overlaps
between MultiPolygons that have overlapping bounding boxes.

	Parameters

	
	a_cells – Sequence A of MultiPolygons

	b_cells – Sequence B of MultiPolygons

	Returns

	A matrix with row indices that correspond to the indices of B and column
indices that correspond to the indices of A. Every element at row
i and column j in the matrix represents the fraction of the
MultiPolygon in B at index i that overlaps with the MultiPolygon in
A at index j.

	
mobility_pipeline.lib.make_matrix.make_admin_admin_matrix(tower_tower: numpy.ndarray, tower_admin: numpy.ndarray, admin_tower: numpy.ndarray) → numpy.ndarray

	Compute the admin-to-admin matrix

Computed by multiplying the three provided matrices like so:
(tower_admin) * (tower_tower) * (admin_tower)

	Parameters

	
	tower_tower – The tower-to-tower mobility data

	tower_admin – Stores the fraction of each admin that is covered by each
cell tower

	admin_tower – Stores the fraction of each cell tower’s range that is
within each admin

	Returns

	An admin-to-admin mobility matrix such that each value with row index
i and column index j is the estimated number of people who moved
that day from the admin with index i to the admin with index j.

	
mobility_pipeline.lib.make_matrix.make_admin_to_tower_matrix(admin_cells: List[shapely.geometry.multipolygon.MultiPolygon], tower_cells: List[shapely.geometry.multipolygon.MultiPolygon]) → numpy.ndarray

	Compute the admin-to-tower matrix.

This is a wrapper function for make_a_to_b_matrix(), with matrices
A and B as denoted for each argument.

	Parameters

	
	tower_cells – Sequence of Voronoi cells; used as matrix A.

	admin_cells – Sequence of administrative regions; used as matrix B.

	Returns

	The admin-tower matrix.

	
mobility_pipeline.lib.make_matrix.make_tower_to_admin_matrix(tower_cells: List[shapely.geometry.multipolygon.MultiPolygon], admin_cells: List[shapely.geometry.multipolygon.MultiPolygon]) → numpy.ndarray

	Compute the tower-to-admin matrix.

This is a wrapper function for make_a_to_b_matrix(), with matrices
A and B as denoted for each argument.

	Parameters

	
	admin_cells – Sequence of administrative regions; used as matrix A.

	tower_cells – Sequence of Voronoi cells; used as matrix B.

	Returns

	The tower-admin matrix.

	
mobility_pipeline.lib.make_matrix.make_tower_tower_matrix(mobility: pandas.core.frame.DataFrame, n_towers: int) → numpy.ndarray

	Make tower-to-tower mobility matrix

Thank you to Tomas Bencomo (https://github.com/tjbencomo) for writing the
initial version of this function.

	Parameters

	
	mobility – DataFrame of mobility data with columns
[ORIGIN, DESTINATION, COUNT]. All values should be numeric.

	n_towers – Number of towers, which defines the length of each matrix
dimension

	Returns

	The tower-to-tower matrix, which has shape (n_towers, n_towers) and
where the value at row i and column j is the mobility count for
origin i and destination j.

mobility_pipeline.lib.overlap module

Utilities for working with overlapping Polygons and MultiPolygons

	
mobility_pipeline.lib.overlap.compute_overlap(polygon_1: Union[shapely.geometry.polygon.Polygon, shapely.geometry.multipolygon.MultiPolygon], polygon_2: Union[shapely.geometry.polygon.Polygon, shapely.geometry.multipolygon.MultiPolygon])

	Computes the fraction of the first polygon that intersects the second

The returned fraction is (area of intersection) / (area of polygon_1).

	Parameters

	
	polygon_1 – The first polygon, whose total area will be the denominator
for the computed fraction

	polygon_2 – The second polygon

	Returns

	The fraction of the first polygon that intersects the second

mobility_pipeline.lib.validate module

Functions for validating data file formats and contents

	
mobility_pipeline.lib.validate.AREA_THRESHOLD = 0.0001

	Allowable deviance, as a fraction of the area of the union,
between the area of the union of polygons and the sum of
the polygons’ individual areas. Agreement between these values indicates the
polygons are disjoint and contiguous. Threshold was chosen based on the
deviances in known good Voronoi tessellations.

	
mobility_pipeline.lib.validate.all_numeric(string: str) → bool

	Check that a string is composed entirely of digits

	Parameters

	string – String to check

	Returns

	True if and only if the string is composed entirely of digits

	
mobility_pipeline.lib.validate.validate_admins(country_id) → Optional[str]

	Check that the admins defined in the shapefile are reasonable

Admins are loaded using load_admin_cells().

Checks:

	That the cells can be loaded by load_admin_cells.

	That the cells are contiguous and disjoint. This is checked by comparing
the sum of areas of each polygon and the area of their union. These two
should be equal.

	That at least one cell is loaded.

	Parameters

	country_id – Country identifier.

	Returns

	A description of a found error, or None if no error found.

	
mobility_pipeline.lib.validate.validate_contiguous_disjoint_cells(cells: List[Union[shapely.geometry.multipolygon.MultiPolygon, shapely.geometry.polygon.Polygon]])

	Check that cells are contiguous and disjoint and that they exist

Checks:

	That the cells are contiguous and disjoint. This is checked by comparing
the sum of areas of each polygon and the area of their union. These two
should be equal. The allowable deviation is specified by
AREA_THRESHOLD

	That at least one cell is loaded.

	Returns

	A description of a found error, or None if no error found.

	
mobility_pipeline.lib.validate.validate_mobility(raw: List[List[str]]) → Optional[str]

	Checks that the text from a CSV file is in a valid format for mobility

The text must consist of a list of rows, where each row is a list of exactly
4 strings: a date (not checked), an origin tower, a destination tower, and
a count.

The origin and destination must be composed of digits following
data_interface.TOWER_PREFIX. The count must be composed entirely
of digits and represent a non-negative integer.

The origin and destination tower numeric portions must strictly increase in
origin-major order.

	Parameters

	raw – List of mobility CSV data by applying list(csv.reader(f))

	Returns

	None if the input is valid, a string describing the error otherwise.

	
mobility_pipeline.lib.validate.validate_mobility_full(mobility: List[List[str]]) → Optional[str]

	Check whether the mobility data file is correctly ordered and full

The mobility data file is loaded from the file at path
mobility_pipeline.data_interface.MOBILITY_PATH(). Correctly ordered
means that the tower names’ numeric portions strictly increase in
origin-major order. Full means that there is a row for every combination of
origin and destination tower.

If this order were perfect, it would make forming the mobility matrix as
easy as reshaping the last column. Unfortunately, this function showed that
some coordinates are missing or out of order, so counts must be inserted
manually.

	Parameters

	mobility – List of mobility CSV data by applying list(csv.reader(f))

	Returns

	None if there is no error, otherwise a description of the error.

	
mobility_pipeline.lib.validate.validate_tower_cells_aligned(cells: List[shapely.geometry.multipolygon.MultiPolygon], towers: numpy.ndarray) → Optional[str]

	Check that each tower’s index matches the cell at the same index

For any cell c at index i, an error is found if c has nonzero
area and the tower at index i is not within c.

	Parameters

	
	cells – List of the cells (multi) polygons, in order

	towers – List of the towers’ coordinates (latitude, longitude), in order

	Returns

	A description of a found error, or None if no error found.

	
mobility_pipeline.lib.validate.validate_tower_index_name_aligned(csv_reader: Iterator) → Optional[str]

	Check that in the towers data file, the tower names match their indices

Indices are zero-indexed from the second row in the file (to skip the
header). An error is considered found if any tower name is not exactly
TOWER_PREFIX appended with the tower’s index.

	Parameters

	csv_reader – CSV reader from calling csv.reader(f) on the open data
file f

	Returns

	A description of a found error, or None if no error found.

	
mobility_pipeline.lib.validate.validate_voronoi(voronoi_path) → Optional[str]

	Check that the Voronoi cells are reasonable

Checks:

	That the cells can be loaded by load_cells.

	That the cells are contiguous and disjoint. This is checked by comparing
the sum of areas of each polygon and the area of their union. These two
should be equal.

	That at least one cell is loaded.

	Returns

	A description of a found error, or None if no error found.

mobility_pipeline.lib.voronoi module

Tools for working with Voronoi tessellations

Given a 2-dimensional space with a set of points (called seeds), the Voronoi
tessellation is a partitioning of the space such that for every partition, which
is called a cell,
the cell contains exactly one seed, and every point in the cell is
closer to the cell’s seed than it is to any other seed. For more
information, see https://en.wikipedia.org/wiki/Voronoi_diagram.

	
class mobility_pipeline.lib.voronoi.VoronoiCell

	Bases: dict

This class describes is for type hinting Voronoi cell JSONs

	
mobility_pipeline.lib.voronoi.json_to_polygon(points_json: List[List[float]]) → shapely.geometry.polygon.Polygon

	Loads a Polygon from a JSON of points

Loads Polygon from a JSON of the format:

where each latitude-longitude pair describes a point defining the boundary
of the polygon.

	Parameters

	points_json – The points that define the boundary of the polygon

	Returns

	A polygon

	
mobility_pipeline.lib.voronoi.load_cell(cell_json: mobility_pipeline.lib.voronoi.VoronoiCell) → shapely.geometry.multipolygon.MultiPolygon

	Loads a Voronoi cell from JSON in Polygon or MultiPolygon format

Loads Voronoi cell from a JSON of the Polygon format:

or of the MultiPolygon format:

where each latitude-longitude pair describes a point of the Voronoi
tessellation. If the JSON is in the Polygon format, a
shapely.geometry.MultiPolygon object will be returned where the
MultiPolygon has one member, the described polygon.

The value of the type key is used to distinguish Polygon and
MultiPolygon formats.

	Parameters

	cell_json – The points that define the boundary of the Voronoi
cell

	Returns

	A polygon of the Voronoi cell

Module contents

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 mobility_pipeline	

 	
 	
 mobility_pipeline.check_validation	

 	
 	
 mobility_pipeline.data_interface	

 	
 	
 mobility_pipeline.gen_country_matrices	

 	
 	
 mobility_pipeline.gen_day_mobility	

 	
 	
 mobility_pipeline.lib	

 	
 	
 mobility_pipeline.lib.make_matrix	

 	
 	
 mobility_pipeline.lib.overlap	

 	
 	
 mobility_pipeline.lib.validate	

 	
 	
 mobility_pipeline.lib.voronoi	

 	
 	
 mobility_pipeline.plot_voronoi	

 	
 	
 mobility_pipeline.visualize_overlaps	

Index

 A
 | C
 | D
 | G
 | I
 | J
 | L
 | M
 | P
 | S
 | T
 | V

A

 	
 	ADMIN_ADMIN_TEMPLATE (in module mobility_pipeline.data_interface)

 	ADMIN_GEOJSON_TEMPLATE (in module mobility_pipeline.data_interface)

 	ADMIN_SHAPE_PATH (in module mobility_pipeline.data_interface)

 	
 	ADMIN_TOWER_TEMPLATE (in module mobility_pipeline.data_interface)

 	all_numeric() (in module mobility_pipeline.lib.validate)

 	AREA_THRESHOLD (in module mobility_pipeline.lib.validate)

C

 	
 	compute_overlap() (in module mobility_pipeline.lib.overlap)

 	
 	convert_shape_to_json() (in module mobility_pipeline.data_interface)

 	COUNTRY_ID (in module mobility_pipeline.data_interface)

D

 	
 	DATA_PATH (in module mobility_pipeline.data_interface)

 	
 	deserialize_mat() (in module mobility_pipeline.data_interface)

G

 	
 	generate_rtree() (in module mobility_pipeline.lib.make_matrix)

I

 	
 	I_TOWER_TO_COLOR (in module mobility_pipeline.visualize_overlaps)

J

 	
 	json_to_polygon() (in module mobility_pipeline.lib.voronoi)

L

 	
 	load_admin_cells() (in module mobility_pipeline.data_interface)

 	load_admin_tower() (in module mobility_pipeline.data_interface)

 	load_cell() (in module mobility_pipeline.lib.voronoi)

 	load_mobility() (in module mobility_pipeline.data_interface)

 	
 	load_polygons_from_json() (in module mobility_pipeline.data_interface)

 	load_tower_admin() (in module mobility_pipeline.data_interface)

 	load_towers() (in module mobility_pipeline.data_interface)

 	load_voronoi_cells() (in module mobility_pipeline.data_interface)

M

 	
 	main() (in module mobility_pipeline.gen_country_matrices)

 	(in module mobility_pipeline.gen_day_mobility)

 	(in module mobility_pipeline.visualize_overlaps)

 	make_a_to_b_matrix() (in module mobility_pipeline.lib.make_matrix)

 	make_admin_admin_matrix() (in module mobility_pipeline.lib.make_matrix)

 	make_admin_to_tower_matrix() (in module mobility_pipeline.lib.make_matrix)

 	make_tower_to_admin_matrix() (in module mobility_pipeline.lib.make_matrix)

 	make_tower_tower_matrix() (in module mobility_pipeline.lib.make_matrix)

 	MOBILITY_PATH (in module mobility_pipeline.data_interface)

 	mobility_pipeline (module)

 	
 	mobility_pipeline.check_validation (module)

 	mobility_pipeline.data_interface (module)

 	mobility_pipeline.gen_country_matrices (module)

 	mobility_pipeline.gen_day_mobility (module)

 	mobility_pipeline.lib (module)

 	mobility_pipeline.lib.make_matrix (module)

 	mobility_pipeline.lib.overlap (module)

 	mobility_pipeline.lib.validate (module)

 	mobility_pipeline.lib.voronoi (module)

 	mobility_pipeline.plot_voronoi (module)

 	mobility_pipeline.visualize_overlaps (module)

P

 	
 	plot_polygon() (in module mobility_pipeline.plot_voronoi)

 	(in module mobility_pipeline.visualize_overlaps)

S

 	
 	save_admin_admin() (in module mobility_pipeline.data_interface)

 	save_admin_tower() (in module mobility_pipeline.data_interface)

 	
 	save_tower_admin() (in module mobility_pipeline.data_interface)

 	serialize_mat() (in module mobility_pipeline.data_interface)

T

 	
 	TOWER_ADMIN_TEMPLATE (in module mobility_pipeline.data_interface)

 	
 	TOWER_PREFIX (in module mobility_pipeline.data_interface)

 	TOWERS_PATH (in module mobility_pipeline.data_interface)

V

 	
 	validate_admins() (in module mobility_pipeline.lib.validate)

 	validate_contiguous_disjoint_cells() (in module mobility_pipeline.lib.validate)

 	validate_data_files() (in module mobility_pipeline.check_validation)

 	validate_mobility() (in module mobility_pipeline.lib.validate)

 	validate_mobility_full() (in module mobility_pipeline.lib.validate)

 	
 	validate_tower_cells_aligned() (in module mobility_pipeline.lib.validate)

 	validate_tower_index_name_aligned() (in module mobility_pipeline.lib.validate)

 	validate_voronoi() (in module mobility_pipeline.lib.validate)

 	VORONOI_PATH (in module mobility_pipeline.data_interface)

 	VoronoiCell (class in mobility_pipeline.lib.voronoi)

 nav.xhtml

 Table of Contents

 		
 Documentation for UNICEF Mobility Pipeline

 		
 Getting Started

 		
 Getting the Code and Dependencies

 		
 Contributing

 		
 Your First Contribution

 		
 Guidelines

 		
 Code Style

 		
 Testing

 		
 User Manual

 		
 Setup

 		
 Getting Shapefiles

 		
 Configuration

 		
 Running the Program

 		
 Running Utilities

 		
 Plot Voronoi

 		
 Visualize Overlaps

 		
 Validate Data File Formats

 		
 Developer Manual

 		
 Technical Concepts

 		
 Matrices

 		
 Code Layout and Organization

 		
 Utilities

 		
 Library

 		
 General Computation Process

 		
 Code Documentation

 		
 mobility_pipeline package

 		
 Subpackages

 		
 Submodules

 		
 mobility_pipeline.check_validation module

 		
 mobility_pipeline.data_interface module

 		
 mobility_pipeline.gen_country_matrices module

 		
 mobility_pipeline.gen_day_mobility module

 		
 mobility_pipeline.plot_voronoi module

 		
 mobility_pipeline.visualize_overlaps module

 		
 Module contents

_static/file.png

_static/minus.png

_static/plus.png

