
UNICEF Mobility Pipeline

Stanford Code the Change (http://codethechange.stanford.edu)

Mar 16, 2020

CONTENTS:

1 Getting Started 3
1.1 Getting the Code and Dependencies . 3

2 Contributing 5
2.1 Your First Contribution . 5
2.2 Guidelines . 6

3 Using mobility_pipeline 9
3.1 Setup . 9
3.2 Running the Program . 10
3.3 Running Utilities . 10

4 Developer Manual 11
4.1 Technical Concepts . 11
4.2 Code Layout and Organization . 11
4.3 General Computation Process . 12

5 mobility_pipeline 13
5.1 mobility_pipeline package . 13

6 Project Overview 25

7 Legal 27

8 Indices and tables 29

Python Module Index 31

Index 33

i

ii

UNICEF Mobility Pipeline

CONTENTS: 1

https://travis-ci.com/codethechange/mobility_pipeline
https://codecov.io/gh/codethechange/mobility_pipeline
https://unicef-mobility-pipeline.readthedocs.io/en/latest/?badge=latest

UNICEF Mobility Pipeline

2 CONTENTS:

CHAPTER

ONE

GETTING STARTED

Our code is hosted here: https://github.com/codethechange/mobility_pipeline

1.1 Getting the Code and Dependencies

1. Choose where you want to download the code, and navigate to that directory. Then download the code.

$ cd path/to/desired/directory
$ git clone https://github.com/codethechange/mobility_pipeline.git

2. Install python 3 from https://python.org or via your favorite package manager

3. Install dependencies into a virtual environment

$ cd name_of_cloned_repository
$ python3 -m venv venv
$ source venv/bin/activate
$ pip install -r requirements.txt

Now you’re all set!

3

https://github.com/codethechange/mobility_pipeline
https://python.org

UNICEF Mobility Pipeline

4 Chapter 1. Getting Started

CHAPTER

TWO

CONTRIBUTING

2.1 Your First Contribution

1. Create a fork of this repository on GitHub under your own account.

2. Follow the getting started guide, substituting references to the main repository for your fork.

3. Create a new branch

$ git checkout -b my-new-branch

4. Make some awesome commits

$ # Make some changes
$ git commit

5. Make sure all tests pass

$./test.sh
$ # All tests should pass, and pylint and mypy should raise no complaints

6. Merge in any changes from the main repository that might have occurred since you made the fork. Fix any
merge conflicts

$ git checkout master
$ git pull upstream master
$ git checkout my-new-branch
$ git merge master

7. Push the branch:

$ git push -u origin my-new-branch

8. Submit a pull request on GitHub

9. Thanks for your contribution! One of the maintainers will get back to you soon with any suggested changes or
feedback.

5

https://www.github.com
GETTING_STARTED.rst
https://www.github.com

UNICEF Mobility Pipeline

2.2 Guidelines

Any code contributions should follow the following guidelines.

2.2.1 Code Style

Python code should conform to the PEP8 style guidelines.

Docstrings should conform to the Google Style. For example (copied from Google’s Style Guide):

def fetch_bigtable_rows(big_table, keys, other_silly_variable=None):
"""Fetches rows from a Bigtable.

Retrieves rows pertaining to the given keys from the Table instance
represented by big_table. Silly things may happen if
other_silly_variable is not None.

Args:
big_table: An open Bigtable Table instance.
keys: A sequence of strings representing the key of each table row

to fetch.
other_silly_variable: Another optional variable, that has a much

longer name than the other args, and which does nothing.

Returns:
A dict mapping keys to the corresponding table row data
fetched. Each row is represented as a tuple of strings. For
example:

{'Serak': ('Rigel VII', 'Preparer'),
'Zim': ('Irk', 'Invader'),
'Lrrr': ('Omicron Persei 8', 'Emperor')}

If a key from the keys argument is missing from the dictionary,
then that row was not found in the table.

Raises:
IOError: An error occurred accessing the bigtable.Table object.

"""

6 Chapter 2. Contributing

https://www.python.org/dev/peps/pep-0008/
https://github.com/google/styleguide/blob/gh-pages/pyguide.md#38-comments-and-docstrings
https://github.com/google/styleguide

UNICEF Mobility Pipeline

2.2.2 Testing

To run all tests, execute test.sh. All tests should pass on your submission.

Travis CI

These tests are checked are run by Travis CI on all pull requests and the master branch. Before each commit, run
test.sh and ensure that all tests pass. All tests should pass on each commit to make reverting easy.

Unit Testing

Unit testing is performed using pytest. To run these tests, execute python -m pytest from the repository root.

Code and Style Analysis

PEP8 are checked by pylint. pylint also performs static code analysis to catch some programming errors. This
analysis is intended to be a fall-back defense, as unit testing should be thorough.

Type Checking

All code should use type hints wherever type cannot be inferred. At a minimum, all function prototypes should have
type hints for the return value and each parameter. Type hinting is performed in the code itself, not in docstrings. Static
type analysis is performed by mypy

Code Coverage

When running the test suite using test.sh, code coverage is computed by pytest-cov when running pytest and
output after test results. Use these results to ensure that all tests are being covered. If the total coverage is not 100%,
run coverage report -m to see which lines were not tested. Incomplete coverage may be acceptable if the
untested lines should not have been tested (e.g. code stubs for un-implemented functions).

Coverage is tracked by Codecov.

2.2. Guidelines 7

https://travis-ci.com
https://pytest.org/
https://pytest-cov.readthedocs.io/en/latest/
https://codecov.io

UNICEF Mobility Pipeline

8 Chapter 2. Contributing

CHAPTER

THREE

USING MOBILITY_PIPELINE

3.1 Setup

3.1.1 Getting Shapefiles

Download the shapefile (.shp) from GADM (Database of Global Administrative Areas). After unpacking the zip
file, be sure to choose the .shp file that corresponds to the level of admin you want (e.g. states versus counties in the
United States).

Next, conver the .shp file into a GeoJSON format via the command line tool ogr2ogr, available by installing
GDAL. Then, do the conversion with this command:

ogr2ogr -f GeoJSON -t_srs crs:84 [name].geojson [name].shp

replacing [name] to match your .shp file.

3.1.2 Configuration

Regardless of what you want to use mobility_pipeline for, you will need to tell it how to find your data. You can do so
by adjusting the constants in mobility_pipeline.data_interface. These constants are:

• mobility_pipeline.data_interface.DATA_PATH : The path to the folder holding your data.

• mobility_pipeline.data_interface.TOWERS_PATH : This is a CSV file containing the coordinates
of each cell tower.

• mobility_pipeline.data_interface.VORONOI_PATH : This is a JSON file that describes the cells
of a Voronoi Tessellation whose seeds are the cell towers.

• mobility_pipeline.data_interface.MOBILITY_PATH : This is a CSV file holding the mobility
data.

• mobility_pipeline.data_interface.TOWER_PREFIX: This is a string that prefixes tower indices
in the tower name. For example, Brazil towers might be named br0, br1, etc. with br being the prefix.

For details on the required formats of these files, see the documentation for data_interface.

9

https://gadm.org/download_country_v3.html
https://www.gdal.org/
https://en.wikipedia.org/wiki/Voronoi_diagram

UNICEF Mobility Pipeline

3.2 Running the Program

There are 2 scripts:

• gen_country_matrices.py: run once for each admin level / country you want data for. It will generate
the admin-to-tower and tower-to-admin matrices.

• gen_day_mobility.py: run for each day’s worth of data. It will compute the admin-to-admin mobility
data.

For both scripts, run with --help for more usage information. Both scripts also run independently of the path
constants in data_interface.py. Instead, they accept command-line arguments that define their operation.

3.3 Running Utilities

This program also comes with utilities. These utilities use the constants in data_interface.py for the most part.

3.3.1 Plot Voronoi

To get a sense for what the Voronoi tessellation looks like, you can plot it by running plot_voronoi.py. This
will display a plot of all the Voronoi cells with the tower positions overlayed. For details, see the documentation for
mobility_pipeline.plot_voronoi.

3.3.2 Visualize Overlaps

To see what the overlaps look like, you can see a plot of the shapefile with one Voronoi cell and the admin regions it
might overlap with color-coded. The script also prints out the values that would go in the tower-to-admin matrix so
you can see what the numbers represent visually. To see the plot, run visualize_overlaps.py. For details, see
mobility_pipeline.visualize_overlaps.

3.3.3 Validate Data File Formats

You can run some checks to provide some assurance that a set of data files are formatted as the program expects. After
configuring the data paths as described above, you can run these checks by executing check_validation.py. You
can also look at the code in this file to see what format the program expects. For details, see mobility_pipeline.
check_validation.

10 Chapter 3. Using mobility_pipeline

CHAPTER

FOUR

DEVELOPER MANUAL

4.1 Technical Concepts

4.1.1 Matrices

We store program data internally as numpy matrices wherever possible so that we can take advantage of numpy’s
optimizations. These are the main matrices the data goes through:

• Tower-to-tower matrix: The raw mobility data between towers

• Tower-to-admin matrix: Stores the fraction of each administrative region that is within the range of each tower
(covered by each tower’s Voronoi cell).

• Admin-to-tower matrix: Stores the fraction of each tower’s range (Voronoi cell) that is within each administra-
tive region.

• Admin-to-admin matrix: The end product, which describes mobility between administrative regions.

For details, see mobility_pipeline.lib.make_matrix.

4.2 Code Layout and Organization

4.2.1 Utilities

The python files outside of lib are executable script files meant to be run from the terminal. While they may have
functions, those functions are not meant to be imported into other programs.

4.2.2 Library

The files within lib form a library of functions that are format-agnostic and designed to be repurposed in other
programs. They are covered by unit tests and are used by the utilities. They are broadly divided into the following
files:

• mobility_pipeline.lib.make_matrix: Functions for making and working with the matrices.

• mobility_pipeline.lib.overlap: Functions for working with polygon overlaps in general.

• mobility_pipeline.lib.validate: Functions for validating data formats.

• mobility_pipeline.lib.voronoi: Functions for working with Voronoi tessellations.

11

UNICEF Mobility Pipeline

4.3 General Computation Process

We get the tower-to-tower matrix from the mobility data. Then, we use the country shapefile and Voronoi tes-
sellation to compute the tower-to-admin and admin-to-tower matrices. Finally, we compute the admin-to-admin
matrix by multiplying the other three matrices like this: (tower-to-admin) * (tower-to-tower) *
(admin-to-tower)

12 Chapter 4. Developer Manual

CHAPTER

FIVE

MOBILITY_PIPELINE

5.1 mobility_pipeline package

5.1.1 Subpackages

mobility_pipeline.lib package

Submodules

mobility_pipeline.lib.make_matrix module

Functions for making tower-tower, tower-admin, and admin-tower matrices

Matrices:

• tower-tower: The raw mobility data between cell towers. The value at row i and column j is the number of
people who move on that day from the region served by tower i to the region served by tower j. Note that really,
this is the number of cell phones that connect to tower i in the morning and tower j in the evening, which we
assume represents a person moving. This matrix has row indices of the origin towers and column indices of the
destination towers.

• tower-admin: Computed from the Voronoi tessellation and the country shapefile, this matrix represents the
percent of each admin that is covered by each tower. For any x in the matrix at row i and column j, we know
that a fraction x of the admin with index i is covered by the tower with index j. This means that the matrix has
row indices of admin indices and column indices of tower indices.

• admin-tower: Computed from the Voronoi tessellation and the country shapefile, this matrix represents the
percent of each tower’s range that is within each admin. For any x in the matrix at row i and column j, we
know that a fraction x of the Voronoi cell for the tower with index i is within the admin with index j. This
means that the matrix has row indices of tower indices and column indices of admin indices.

• admin-admin: This is the final mobility matrix, which represents the number of people who move between
admins each day. The value at row i and column j is the number of people who move on that day from the
admin with index i to the admin with index j. This is, of course, being estimated from cell phone data and the
overlaps as computed in the other matrices.

This strategy is explained by Mike Fabrikant at UNICEF: https://medium.com/@mikefabrikant/
cell-towers-chiefdoms-and-anonymized-call-detail-records-a-guide-to-creating-a-mobility-matrix-d2d5c1bafb68

mobility_pipeline.lib.make_matrix.generate_rtree(polygons: collections.abc.Sequence)
→ Tuple[shapely.strtree.STRtree,
Dict[Tuple[tuple, ...], int]]

Helper function that builds an RTree from MultiPolygons

13

https://medium.com/@mikefabrikant/cell-towers-chiefdoms-and-anonymized-call-detail-records-a-guide-to-creating-a-mobility-matrix-d2d5c1bafb68
https://medium.com/@mikefabrikant/cell-towers-chiefdoms-and-anonymized-call-detail-records-a-guide-to-creating-a-mobility-matrix-d2d5c1bafb68

UNICEF Mobility Pipeline

The Rtree is built from MultiPolygons using shapely.strtree.STRtree. Since the RTree returns the
overlapping MultiPolygons, we need a way to retrieve the polygon’s index. We do this with a dictionary from
the exterior coordinates (Polygon.exterior.coords) of every Polygon in the MultiPolygon to the MultiPolygon’s
index in the provided Sequence.

Specifically, you can generate the key for a given MultiPolygon mpoly like so:

key = tuple([tuple(p.exterior.coords) for p in mpoly])

Parameters polygons – A Sequence of MultiPolygons. Must be iterable and able to be passed to
the STRtree constructor. Iteration must be deterministic.

Returns A tuple of the RTree and the index mapping dictionary.

mobility_pipeline.lib.make_matrix.make_a_to_b_matrix(a_cells:
List[shapely.geometry.multipolygon.MultiPolygon],
b_cells:
List[shapely.geometry.multipolygon.MultiPolygon])
→ numpy.ndarray

Create an overlap matrix from sequence A to B

Computes for every pair of MultiPolygons between A and B, the fraction of the MultiPolygon in B that is
covered by the one in A. We use an RTree to reduce the number of overlaps we have to compute by only
computing overlaps between MultiPolygons that have overlapping bounding boxes.

Parameters

• a_cells – Sequence A of MultiPolygons

• b_cells – Sequence B of MultiPolygons

Returns A matrix with row indices that correspond to the indices of B and column indices that
correspond to the indices of A. Every element at row i and column j in the matrix represents
the fraction of the MultiPolygon in B at index i that overlaps with the MultiPolygon in A at
index j.

mobility_pipeline.lib.make_matrix.make_admin_admin_matrix(tower_tower:
numpy.ndarray,
tower_admin:
numpy.ndarray,
admin_tower:
numpy.ndarray) →
numpy.ndarray

Compute the admin-to-admin matrix

Computed by multiplying the three provided matrices like so: (tower_admin) * (tower_tower) * (admin_tower)

Parameters

• tower_tower – The tower-to-tower mobility data

• tower_admin – Stores the fraction of each admin that is covered by each cell tower

• admin_tower – Stores the fraction of each cell tower’s range that is within each admin

Returns An admin-to-admin mobility matrix such that each value with row index i and column
index j is the estimated number of people who moved that day from the admin with index i to
the admin with index j.

14 Chapter 5. mobility_pipeline

UNICEF Mobility Pipeline

mobility_pipeline.lib.make_matrix.make_admin_to_tower_matrix(admin_cells:
List[shapely.geometry.multipolygon.MultiPolygon],
tower_cells:
List[shapely.geometry.multipolygon.MultiPolygon])
→ numpy.ndarray

Compute the admin-to-tower matrix.

This is a wrapper function for make_a_to_b_matrix(), with matrices A and B as denoted for each argu-
ment.

Parameters

• tower_cells – Sequence of Voronoi cells; used as matrix A.

• admin_cells – Sequence of administrative regions; used as matrix B.

Returns The admin-tower matrix.

mobility_pipeline.lib.make_matrix.make_tower_to_admin_matrix(tower_cells:
List[shapely.geometry.multipolygon.MultiPolygon],
admin_cells:
List[shapely.geometry.multipolygon.MultiPolygon])
→ numpy.ndarray

Compute the tower-to-admin matrix.

This is a wrapper function for make_a_to_b_matrix(), with matrices A and B as denoted for each argu-
ment.

Parameters

• admin_cells – Sequence of administrative regions; used as matrix A.

• tower_cells – Sequence of Voronoi cells; used as matrix B.

Returns The tower-admin matrix.

mobility_pipeline.lib.make_matrix.make_tower_tower_matrix(mobility: pan-
das.core.frame.DataFrame,
n_towers: int) →
numpy.ndarray

Make tower-to-tower mobility matrix

Thank you to Tomas Bencomo (https://github.com/tjbencomo) for writing the initial version of this function.

Parameters

• mobility – DataFrame of mobility data with columns [ORIGIN, DESTINATION,
COUNT]. All values should be numeric.

• n_towers – Number of towers, which defines the length of each matrix dimension

Returns The tower-to-tower matrix, which has shape (n_towers, n_towers) and where the
value at row i and column j is the mobility count for origin i and destination j.

5.1. mobility_pipeline package 15

https://github.com/tjbencomo

UNICEF Mobility Pipeline

mobility_pipeline.lib.overlap module

Utilities for working with overlapping Polygons and MultiPolygons

mobility_pipeline.lib.overlap.compute_overlap(polygon_1:
Union[shapely.geometry.polygon.Polygon,
shapely.geometry.multipolygon.MultiPolygon],
polygon_2:
Union[shapely.geometry.polygon.Polygon,
shapely.geometry.multipolygon.MultiPolygon])

Computes the fraction of the first polygon that intersects the second

The returned fraction is (area of intersection) / (area of polygon_1).

Parameters

• polygon_1 – The first polygon, whose total area will be the denominator for the computed
fraction

• polygon_2 – The second polygon

Returns The fraction of the first polygon that intersects the second

mobility_pipeline.lib.validate module

Functions for validating data file formats and contents

mobility_pipeline.lib.validate.AREA_THRESHOLD = 0.0001
Allowable deviance, as a fraction of the area of the union, between the area of the union of polygons and the
sum of the polygons’ individual areas. Agreement between these values indicates the polygons are disjoint and
contiguous. Threshold was chosen based on the deviances in known good Voronoi tessellations.

mobility_pipeline.lib.validate.all_numeric(string: str)→ bool
Check that a string is composed entirely of digits

Parameters string – String to check

Returns True if and only if the string is composed entirely of digits

mobility_pipeline.lib.validate.validate_admins(country_id)→ Optional[str]
Check that the admins defined in the shapefile are reasonable

Admins are loaded using load_admin_cells().

Checks:

• That the cells can be loaded by load_admin_cells.

• That the cells are contiguous and disjoint. This is checked by comparing the sum of areas of each polygon
and the area of their union. These two should be equal.

• That at least one cell is loaded.

Parameters country_id – Country identifier.

Returns A description of a found error, or None if no error found.

mobility_pipeline.lib.validate.validate_contiguous_disjoint_cells(cells:
List[Union[shapely.geometry.multipolygon.MultiPolygon,
shapely.geometry.polygon.Polygon]])

Check that cells are contiguous and disjoint and that they exist

16 Chapter 5. mobility_pipeline

UNICEF Mobility Pipeline

Checks:

• That the cells are contiguous and disjoint. This is checked by comparing the sum of areas of each poly-
gon and the area of their union. These two should be equal. The allowable deviation is specified by
AREA_THRESHOLD

• That at least one cell is loaded.

Returns A description of a found error, or None if no error found.

mobility_pipeline.lib.validate.validate_mobility(raw: List[List[str]])→ Optional[str]
Checks that the text from a CSV file is in a valid format for mobility

The text must consist of a list of rows, where each row is a list of exactly 4 strings: a date (not checked), an
origin tower, a destination tower, and a count.

The origin and destination must be composed of digits following data_interface.TOWER_PREFIX. The
count must be composed entirely of digits and represent a non-negative integer.

The origin and destination tower numeric portions must strictly increase in origin-major order.

Parameters raw – List of mobility CSV data by applying list(csv.reader(f))

Returns None if the input is valid, a string describing the error otherwise.

mobility_pipeline.lib.validate.validate_mobility_full(mobility: List[List[str]]) →
Optional[str]

Check whether the mobility data file is correctly ordered and full

The mobility data file is loaded from the file at path mobility_pipeline.data_interface.
MOBILITY_PATH(). Correctly ordered means that the tower names’ numeric portions strictly increase in
origin-major order. Full means that there is a row for every combination of origin and destination tower.

If this order were perfect, it would make forming the mobility matrix as easy as reshaping the last column.
Unfortunately, this function showed that some coordinates are missing or out of order, so counts must be inserted
manually.

Parameters mobility – List of mobility CSV data by applying list(csv.reader(f))

Returns None if there is no error, otherwise a description of the error.

mobility_pipeline.lib.validate.validate_tower_cells_aligned(cells:
List[shapely.geometry.multipolygon.MultiPolygon],
towers:
numpy.ndarray)
→ Optional[str]

Check that each tower’s index matches the cell at the same index

For any cell c at index i, an error is found if c has nonzero area and the tower at index i is not within c.

Parameters

• cells – List of the cells (multi) polygons, in order

• towers – List of the towers’ coordinates (latitude, longitude), in order

Returns A description of a found error, or None if no error found.

mobility_pipeline.lib.validate.validate_tower_index_name_aligned(csv_reader:
Iterator) →
Optional[str]

Check that in the towers data file, the tower names match their indices

5.1. mobility_pipeline package 17

UNICEF Mobility Pipeline

Indices are zero-indexed from the second row in the file (to skip the header). An error is considered found if any
tower name is not exactly TOWER_PREFIX appended with the tower’s index.

Parameters csv_reader – CSV reader from calling csv.reader(f) on the open data file f

Returns A description of a found error, or None if no error found.

mobility_pipeline.lib.validate.validate_voronoi(voronoi_path)→ Optional[str]
Check that the Voronoi cells are reasonable

Checks:

• That the cells can be loaded by load_cells.

• That the cells are contiguous and disjoint. This is checked by comparing the sum of areas of each polygon
and the area of their union. These two should be equal.

• That at least one cell is loaded.

Returns A description of a found error, or None if no error found.

mobility_pipeline.lib.voronoi module

Tools for working with Voronoi tessellations

Given a 2-dimensional space with a set of points (called seeds), the Voronoi tessellation is a partitioning of the space
such that for every partition, which is called a cell, the cell contains exactly one seed, and every point in the cell is closer
to the cell’s seed than it is to any other seed. For more information, see https://en.wikipedia.org/wiki/Voronoi_diagram.

class mobility_pipeline.lib.voronoi.VoronoiCell
Bases: dict

This class describes is for type hinting Voronoi cell JSONs

mobility_pipeline.lib.voronoi.json_to_polygon(points_json: List[List[float]]) →
shapely.geometry.polygon.Polygon

Loads a Polygon from a JSON of points

Loads Polygon from a JSON of the format:

where each latitude-longitude pair describes a point defining the boundary of the polygon.

Parameters points_json – The points that define the boundary of the polygon

Returns A polygon

mobility_pipeline.lib.voronoi.load_cell(cell_json: mobil-
ity_pipeline.lib.voronoi.VoronoiCell) →
shapely.geometry.multipolygon.MultiPolygon

Loads a Voronoi cell from JSON in Polygon or MultiPolygon format

Loads Voronoi cell from a JSON of the Polygon format:

or of the MultiPolygon format:

where each latitude-longitude pair describes a point of the Voronoi tessellation. If the JSON is in the Polygon
format, a shapely.geometry.MultiPolygon object will be returned where the MultiPolygon has
one member, the described polygon.

The value of the type key is used to distinguish Polygon and MultiPolygon formats.

Parameters cell_json – The points that define the boundary of the Voronoi cell

18 Chapter 5. mobility_pipeline

https://en.wikipedia.org/wiki/Voronoi_diagram

UNICEF Mobility Pipeline

Returns A polygon of the Voronoi cell

Module contents

5.1.2 Submodules

5.1.3 mobility_pipeline.check_validation module

Script that checks the validity of data files

mobility_pipeline.check_validation.validate_data_files()→ bool
Check the validity of data files

Note that these checks are computationally intensive, so they probably should not be included in an automated
pipeline. Rather, they are for manual use.

Data files validated:

• Towers file at mobility_pipeline.data_interface.TOWERS_PATH

• Voronoi file at mobility_pipeline.data_interface.VORONOI_PATH

• Mobility file at mobility_pipeline.data_interface.MOBILITY_PATH

Returns True if all files are valid, False otherwise.

5.1.4 mobility_pipeline.data_interface module

Stores the constants and functions to interface with data files

This file is specific to the data files we are using and their format.

mobility_pipeline.data_interface.ADMIN_ADMIN_TEMPLATE = 'data/brazil-towers-voronoi-mobility//%s-%s-admin-to-admin.csv'
Path to admin-to-admin matrix, accepts substitutions of country_id, day_id

mobility_pipeline.data_interface.ADMIN_GEOJSON_TEMPLATE = 'data/brazil-towers-voronoi-mobility//%s-shape.json'
Path to admin GeoJSON file, accepts substitution of country_id

mobility_pipeline.data_interface.ADMIN_SHAPE_PATH = 'data/brazil-towers-voronoi-mobility/gadm36_BRA_2'
Relative to py:const:DATA_PATH, path to administrative region shape file

mobility_pipeline.data_interface.ADMIN_TOWER_TEMPLATE = 'data/brazil-towers-voronoi-mobility//%s-admin-to-tower.csv'
Template that uses country identifier to make path to admin_tower matrix

mobility_pipeline.data_interface.COUNTRY_ID = 'br'
Country identifier

mobility_pipeline.data_interface.DATA_PATH = 'data/brazil-towers-voronoi-mobility/'
Path to folder containing towers, voronoi, and mobility data

mobility_pipeline.data_interface.MOBILITY_PATH = 'data/brazil-towers-voronoi-mobility/mobility_matrix_20150201.csv'
Relative to DATA_PATH , path to mobility CSV file

mobility_pipeline.data_interface.TOWERS_PATH = 'data/brazil-towers-voronoi-mobility/towers_br.csv'
Relative to DATA_PATH , path to towers CSV file

mobility_pipeline.data_interface.TOWER_ADMIN_TEMPLATE = 'data/brazil-towers-voronoi-mobility//%s-tower-to-admin.csv'
Template that uses country identifier to make path to tower_admin matrix

5.1. mobility_pipeline package 19

UNICEF Mobility Pipeline

mobility_pipeline.data_interface.TOWER_PREFIX = 'br'
The tower name is the tower index appended to this string

mobility_pipeline.data_interface.VORONOI_PATH = 'data/brazil-towers-voronoi-mobility/brazil-voronoi.json'
Relative to DATA_PATH , path to Voronoi JSON file

mobility_pipeline.data_interface.convert_shape_to_json(shapefile_path_prefix: str,
country_id: str)→ None

Converts shapefile containing administrative regions to GeoJSON format

The GeoJSON file is saved at ADMIN_GEOJSON_TEMPLATE % country_id

Parameters

• shapefile_path_prefix – Path to the .shp or .dbf shapefile, optionally without the
file extension. Both the .shp and .dbf files must be present in the same directory and with
the same name (except file extension).

• country_id – Unique identifier for the country and admin level.

Returns None

mobility_pipeline.data_interface.deserialize_mat(mat_path: str)→ numpy.ndarray
Deserialize a matrix from a file

File must have been created by serialize_mat().

Parameters mat_path – Path of matrix file

Returns Deserialized matrix

mobility_pipeline.data_interface.load_admin_cells(identifier: str) →
List[shapely.geometry.multipolygon.MultiPolygon]

Loads the administrative region cells

Data is loaded from ADMIN_GEOJSON_TEMPLATE % identifier. This is a wrapper function for
load_polygons_from_json().

Returns A list of the administrative region cells.

mobility_pipeline.data_interface.load_admin_tower(country_id: str)→ numpy.ndarray
Load admin-to-tower matrix

Data loaded from ADMIN_TOWER_TEMPLATE % country_id.

Parameters country_id – Country identifier

Returns The admin-to-tower matrix

mobility_pipeline.data_interface.load_mobility(mobility_path: str) → pan-
das.core.frame.DataFrame

Loads mobility data from the file at mobility_path.

Returns A pandas.DataFramewith columns ORIGIN, DESTINATION, and COUNT. Columns
ORIGIN and DESTINATION contain numeric portions of tower names, represented as numpy.
int. These numeric portions strictly increase in ORIGIN-major order, but rows may be missing
if they would have had a COUNT value of 0.

mobility_pipeline.data_interface.load_polygons_from_json(filepath) →
List[shapely.geometry.multipolygon.MultiPolygon]

Loads cells from given filepath to JSON.

Returns A list of shapely.geometry.MultiPolygon objects, each of which describes a
cell. If the cell can be described as a single polygon, the returned MultiPolygon will contain
only 1 polygon.

20 Chapter 5. mobility_pipeline

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

UNICEF Mobility Pipeline

mobility_pipeline.data_interface.load_tower_admin(country_id: str)→ numpy.ndarray
Load tower-to-admin matrix

Data loaded from TOWER_ADMIN_TEMPLATE % country_id.

Parameters country_id – Country identifier

Returns The tower-to-admin matrix

mobility_pipeline.data_interface.load_towers(towers_path: str)→ numpy.ndarray
Loads the tower positions from a file

Parameters towers_path – Path to towers file

Returns A matrix of tower coordinates with columns [longitude, latitude] and one tower
per row. Row indices match the numeric portions of tower names.

mobility_pipeline.data_interface.load_voronoi_cells(voronoi_path: str) →
List[shapely.geometry.multipolygon.MultiPolygon]

Loads cells

Parameters voronoi_path – Path to file to load cells from

Returns See load_polygons_from_json. Each returned object represents a Voronoi cell.

mobility_pipeline.data_interface.save_admin_admin(country_id: str, day_id: str, ad-
min_admin: numpy.ndarray)→ str

Save admin-to-admin matrix

Saved to ADMIN_ADMIN_TEMPLATE % (country_id, day_id).

Parameters

• country_id – Country identifier

• day_id – Day identifier

• admin_admin – Admin-to-admin matrix to save

Returns Path at which matrix was saved

mobility_pipeline.data_interface.save_admin_tower(country_id: str, mat:
numpy.ndarray)→ None

Save admin-to-tower matrix

Saved to ADMIN_TOWER_TEMPLATE % country_id.

Parameters

• country_id – Country identifier

• mat – Matrix to save

Returns None

mobility_pipeline.data_interface.save_tower_admin(country_id: str, mat:
numpy.ndarray)→ None

Save tower-to-admin matrix

Saved to TOWER_ADMIN_TEMPLATE % country_id.

Parameters

• country_id – Country identifier

• mat – Matrix to save

Returns None

5.1. mobility_pipeline package 21

UNICEF Mobility Pipeline

mobility_pipeline.data_interface.serialize_mat(mat: numpy.ndarray, mat_path: str) →
None

Save a matrix to a file

Matrix is saved such that it can be recovered by deserialize_mat().

Parameters

• mat – Matrix to save

• mat_path – File to save matrix to

Returns None

5.1.5 mobility_pipeline.gen_country_matrices module

Generate admin-to-tower and tower-to-admin matries for a country

mobility_pipeline.gen_country_matrices.main()
Main function called when script run

5.1.6 mobility_pipeline.gen_day_mobility module

Generate admin-to-admin mobility matrix for a single day

mobility_pipeline.gen_day_mobility.main()
Called when script run

5.1.7 mobility_pipeline.plot_voronoi module

Tool for plotting the Voronoi tessellation described by the provided data

Note that the seeds of the tessellation are based on the provided towers file, not computed from the cells. The tool also
prints to the console the number of towers and number of cells. Towers without an associated cell are shown in green,
while other towers are shown in red.

mobility_pipeline.plot_voronoi.plot_polygon(axes: matplotlib.pyplot.axes, polygon:
shapely.geometry.multipolygon.MultiPolygon)
→ None

Add a polygon to an axes

Parameters

• axes – The axes to add the polygon to

• polygon – The polygon to add

Returns None

22 Chapter 5. mobility_pipeline

UNICEF Mobility Pipeline

5.1.8 mobility_pipeline.visualize_overlaps module

Plots one Voronoi cell on top of all the administrative regions. The admins that intersect the Voronoi cell are colored
by index and have the associated values from the tower-to-admin matrix printed. This lets you check that the matrix
values seem reasonable.

mobility_pipeline.visualize_overlaps.I_TOWER_TO_COLOR = 1
Index of Voronoi cell to show.

mobility_pipeline.visualize_overlaps.main()
Main function that generates the plot

mobility_pipeline.visualize_overlaps.plot_polygon(axes: mat-
plotlib.pyplot.axes, polygon:
shapely.geometry.multipolygon.MultiPolygon,
color, _label='')→ None

Plot a polygon (or multipolygon) with matplotlib

Parameters

• axes – The matplotlib axes to plot on

• polygon – The polygon to plot

• color – Color to use for shading the polygon

• _label – Label for the polygon that will be displayed in the legend

Returns None

5.1.9 Module contents

To get started, see our getting started guide. If you would like to contribute, see our contributing guide.

This project is hosted on GitHub at https://github.com/codethechange/mobility_pipeline

5.1. mobility_pipeline package 23

generated/GETTING_STARTED.html
generated/CONTRIBUTING.html
https://github.com/codethechange/mobility_pipeline

UNICEF Mobility Pipeline

24 Chapter 5. mobility_pipeline

CHAPTER

SIX

PROJECT OVERVIEW

mobility_pipeline uses the relative geographical positions of cell towers and administrative regions (e.g. provinces)
to transform mobility data describing how people move between cell towers into data on how people move between
administrative regions. This lets us turn cell tower movement data that telecommunications providers already have
into data on migration patters between political regions, which is what governments and NGOs need to plan disaster
relief efforts.

25

UNICEF Mobility Pipeline

26 Chapter 6. Project Overview

CHAPTER

SEVEN

LEGAL

This project was created by Stanford Code the Change for UNICEF. It is available under the license in LICENSE.txt

27

http://codethechange.stanford.edu
https://github.com/codethechange/mobility_pipeline/blob/master/LICENSE.txt

UNICEF Mobility Pipeline

28 Chapter 7. Legal

CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• modindex

• search

29

UNICEF Mobility Pipeline

30 Chapter 8. Indices and tables

PYTHON MODULE INDEX

m
mobility_pipeline, 23
mobility_pipeline.check_validation, 19
mobility_pipeline.data_interface, 19
mobility_pipeline.gen_country_matrices,

22
mobility_pipeline.gen_day_mobility, 22
mobility_pipeline.lib, 19
mobility_pipeline.lib.make_matrix, 13
mobility_pipeline.lib.overlap, 16
mobility_pipeline.lib.validate, 16
mobility_pipeline.lib.voronoi, 18
mobility_pipeline.plot_voronoi, 22
mobility_pipeline.visualize_overlaps,

23

31

UNICEF Mobility Pipeline

32 Python Module Index

INDEX

A
ADMIN_ADMIN_TEMPLATE (in module mobil-

ity_pipeline.data_interface), 19
ADMIN_GEOJSON_TEMPLATE (in module mobil-

ity_pipeline.data_interface), 19
ADMIN_SHAPE_PATH (in module mobil-

ity_pipeline.data_interface), 19
ADMIN_TOWER_TEMPLATE (in module mobil-

ity_pipeline.data_interface), 19
all_numeric() (in module mobil-

ity_pipeline.lib.validate), 16
AREA_THRESHOLD (in module mobil-

ity_pipeline.lib.validate), 16

C
compute_overlap() (in module mobil-

ity_pipeline.lib.overlap), 16
convert_shape_to_json() (in module mobil-

ity_pipeline.data_interface), 20
COUNTRY_ID (in module mobil-

ity_pipeline.data_interface), 19

D
DATA_PATH (in module mobil-

ity_pipeline.data_interface), 19
deserialize_mat() (in module mobil-

ity_pipeline.data_interface), 20

G
generate_rtree() (in module mobil-

ity_pipeline.lib.make_matrix), 13

I
I_TOWER_TO_COLOR (in module mobil-

ity_pipeline.visualize_overlaps), 23

J
json_to_polygon() (in module mobil-

ity_pipeline.lib.voronoi), 18

L
load_admin_cells() (in module mobil-

ity_pipeline.data_interface), 20
load_admin_tower() (in module mobil-

ity_pipeline.data_interface), 20
load_cell() (in module mobil-

ity_pipeline.lib.voronoi), 18
load_mobility() (in module mobil-

ity_pipeline.data_interface), 20
load_polygons_from_json() (in module mobil-

ity_pipeline.data_interface), 20
load_tower_admin() (in module mobil-

ity_pipeline.data_interface), 20
load_towers() (in module mobil-

ity_pipeline.data_interface), 21
load_voronoi_cells() (in module mobil-

ity_pipeline.data_interface), 21

M
main() (in module mobil-

ity_pipeline.gen_country_matrices), 22
main() (in module mobil-

ity_pipeline.gen_day_mobility), 22
main() (in module mobil-

ity_pipeline.visualize_overlaps), 23
make_a_to_b_matrix() (in module mobil-

ity_pipeline.lib.make_matrix), 14
make_admin_admin_matrix() (in module mobil-

ity_pipeline.lib.make_matrix), 14
make_admin_to_tower_matrix() (in module mo-

bility_pipeline.lib.make_matrix), 14
make_tower_to_admin_matrix() (in module mo-

bility_pipeline.lib.make_matrix), 15
make_tower_tower_matrix() (in module mobil-

ity_pipeline.lib.make_matrix), 15
MOBILITY_PATH (in module mobil-

ity_pipeline.data_interface), 19
mobility_pipeline (module), 23
mobility_pipeline.check_validation (mod-

ule), 19
mobility_pipeline.data_interface (mod-

ule), 19

33

UNICEF Mobility Pipeline

mobility_pipeline.gen_country_matrices
(module), 22

mobility_pipeline.gen_day_mobility (mod-
ule), 22

mobility_pipeline.lib (module), 19
mobility_pipeline.lib.make_matrix (mod-

ule), 13
mobility_pipeline.lib.overlap (module), 16
mobility_pipeline.lib.validate (module),

16
mobility_pipeline.lib.voronoi (module), 18
mobility_pipeline.plot_voronoi (module),

22
mobility_pipeline.visualize_overlaps

(module), 23

P
plot_polygon() (in module mobil-

ity_pipeline.plot_voronoi), 22
plot_polygon() (in module mobil-

ity_pipeline.visualize_overlaps), 23

S
save_admin_admin() (in module mobil-

ity_pipeline.data_interface), 21
save_admin_tower() (in module mobil-

ity_pipeline.data_interface), 21
save_tower_admin() (in module mobil-

ity_pipeline.data_interface), 21
serialize_mat() (in module mobil-

ity_pipeline.data_interface), 21

T
TOWER_ADMIN_TEMPLATE (in module mobil-

ity_pipeline.data_interface), 19
TOWER_PREFIX (in module mobil-

ity_pipeline.data_interface), 19
TOWERS_PATH (in module mobil-

ity_pipeline.data_interface), 19

V
validate_admins() (in module mobil-

ity_pipeline.lib.validate), 16
validate_contiguous_disjoint_cells() (in

module mobility_pipeline.lib.validate), 16
validate_data_files() (in module mobil-

ity_pipeline.check_validation), 19
validate_mobility() (in module mobil-

ity_pipeline.lib.validate), 17
validate_mobility_full() (in module mobil-

ity_pipeline.lib.validate), 17
validate_tower_cells_aligned() (in module

mobility_pipeline.lib.validate), 17

validate_tower_index_name_aligned() (in
module mobility_pipeline.lib.validate), 17

validate_voronoi() (in module mobil-
ity_pipeline.lib.validate), 18

VORONOI_PATH (in module mobil-
ity_pipeline.data_interface), 20

VoronoiCell (class in mobility_pipeline.lib.voronoi),
18

34 Index

	Getting Started
	Getting the Code and Dependencies

	Contributing
	Your First Contribution
	Guidelines

	Using mobility_pipeline
	Setup
	Running the Program
	Running Utilities

	Developer Manual
	Technical Concepts
	Code Layout and Organization
	General Computation Process

	mobility_pipeline
	mobility_pipeline package

	Project Overview
	Legal
	Indices and tables
	Python Module Index
	Index

